
Environment map lighting 
a.k.a. Image-based lighting 
a.k.a. Reflection mapping 

Jaroslav Křivánek, KSVI, MFF UK 
Jaroslav.Krivanek@mff.cuni.cz 

CG for Game Development - J. Křivánek 
2016 

mailto:xkrivanj@fel.cvut.cz


Acknowledgement 

 Some material based on Ravi Ramamoorthi’s slides 
available from http://inst.eecs.berkeley.edu/~cs283/fa10 
 
 

 Make sure to check out Paul Debevec’s “The Story of 
Reflection Mapping” at 
http://www.pauldebevec.com/ReflectionMapping/ 
 
 

 

CG for Game Development - J. Křivánek 
2016 

http://inst.eecs.berkeley.edu/~cs283/fa10
http://www.pauldebevec.com/ReflectionMapping/


Goal 

 Real-time rendering with complex lighting, shadows, and 
possibly also global illumination 

 Infeasible in real-time game graphics – too much 
computation for too small a time budget 

 Approaches 
 Lift some requirements, do specific-purpose tricks 

 Environment mapping, irradiance environment maps 
 SH-based lighting 

 Split the effort 
 Offline pre-computation + real-time image synthesis 
 Baked light (light maps), pre-computed radiance transfer 

CG for Game Development - J. Křivánek 
2016 



Environment mapping (a.k.a. image-
based lighting, reflection mapping) 

 

Miller and Hoffman, 1984 
Later, Greene 86, Cabral et al, Debevec 97, … 

CG for Game Development - J. Křivánek 
2016 



Assumptions 

 Distant illumination (infinite sphere around the scene) 
 For real-time rendering we often assume  

 No shadowing 
 No interreflections 
 

CG for Game Development - J. Křivánek 
2016 



Image-based lighting 

• Illuminating CG objects using measurements of 
real light (=light probes) 

© Paul Debevec 



 

Point Light Source 

© Paul Debevec 



 

© Paul Debevec 



 

© Paul Debevec 



 

© Paul Debevec 



 

© Paul Debevec 



• Video 
– Rendering with natural light 

• http://www.pauldebevec.com/RNL/ 

– Fiat Lux 
• http://www.pauldebevec.com/FiatLux/movie/ 

 

http://www.pauldebevec.com/RNL/
http://www.pauldebevec.com/FiatLux/movie/


Mapping 
Eu

ca
lip

tu
s  

gr
ov

e 
G

ra
ce

 c
at

he
dr

al
 

Debevec’s spherical “Latitude – longitude” (spherical coordinates) Cube map 



“Latitude – longitude” (spherical coordinates) 

Mapping 
U

ff
iz

i  
ga

lle
ry

 
St

. P
et

er
’s

 C
at

he
dr

al
 

Debevec’s spherical Cube map 



• Mapping from direction in Cartesian  
coordinates to image UV.  

Mapping 

float d = sqrt(dir.x*dir.x + dir.y*dir.y); 
float r = d>0 ? 0.159154943*acos(dir.z)/d : 0.0; 
u = 0.5 + dir.x * r; 
v = 0.5 + dir.y * r; 

Quote from “http://ict.debevec.org/~debevec/Probes/” 
The following light probe images were created by taking two pictures of a mirrored ball at ninety degrees of 
separation and assembling the two radiance maps into this registered dataset. The coordinate mapping of 
these images is such that the center of the image is straight forward, the circumference of the image is 
straight backwards, and the horizontal line through the center linearly maps azimuthal angle to pixel 
coordinate. 
Thus, if we consider the images to be normalized to have coordinates u=[-1,1], v=[-1,1], we have 
theta=atan2(v,u), phi=pi*sqrt(u*u+v*v). The unit vector pointing in the corresponding direction is 
obtained by rotating (0,0,-1) by phi degrees around the y (up) axis and then theta degrees around the -z 
(forward) axis. If for a direction vector in the world (Dx, Dy, Dz), the corresponding (u,v) coordinate in the 
light probe image is (Dx*r,Dy*r) where r=(1/pi)*acos(Dz)/sqrt(Dx^2 + Dy^2). 
 



Rendering with environment 
maps 

CG for Game Development - J. Křivánek 
2016 



 Almost the same reflection equation as before 
 The incident radiance Li is due to the env. map. emission Lem 

modulated by the EM visibility Vem 

Shading due to an environment map 

 
 
 
 ∫ ⋅→⋅⋅=

)(
iioiiemiemor dcos),(),(),(),(

x

xxxx
H

rfVLL ωθωωωωω

CG for Game Development - J. Křivánek 
2016 



Offline rendering – Monte Carlo 
sampling 

CG for Game Development - J. Křivánek 
2016 



Real-time rendering 

 MC is general, but too slow for real-time 
 Real-time 

 
 Mirror surfaces easy  

(just a texture look-up) 
 

 What if the surface is rougher… 
 
 

 Or completely diffuse? 

CG for Game Development - J. Křivánek 
2016 



Environment map pre-filtering 

CG for Game Development - J. Křivánek 
2016 



 Phong model for rough surfaces 
 Illumination function of reflection direction R 

 Lambertian diffuse surface 
 Illumination function of surface normal N 

 
 
 
 
 
 

 Pre-filter (= blur) the EM [Miller and Hoffman, 1984] 
 Irradiance (indexed by N) and Phong (indexed by R) 
 

Environment map pre-filtering 

Chrome Sphere Matte Sphere 



Environment map pre-filtering 

 

CG for Game Development - J. Křivánek 
2016 



Environment map pre-filtering 

 
 Can’t do dynamic lighting 

 Slow blurring in pre-process 
 
 
 

CG for Game Development - J. Křivánek 
2016 



Spherical harmonics-based 
irradiance environment maps 

CG for Game Development - J. Křivánek 
2016 



Spherical harmonics-based irradiance 
environment maps 

Incident Radiance 
(Illumination Environment Map) 

Irradiance Environment Map 

R N 

 Diffuse (Lambertian) surfaces only!!! 



Analytic irradiance formula in SH 
basis 

   Lambertian surface acts like 
low-pass filter 

lm l lmE A L=

( )
2 1

2
2

( 1) !2
( 2)( 1) 2 !

l

l l l

lA l even
l l

π
−  −

=  
+ −   

lA

π

2 / 3π

/ 4π

0 

l0 1 2 

[Ramamoorthi and Hanrahan 01] 
[Basri and Jacobs 01] 

SH coefficients of 
the irradiance EM 

SH coefficients of 
the original EM 

CG for Game Development - J. Křivánek 
2016 



9-parameter approximation 

-1 -2 0 1 2 

0 

1 

2 

 

( , )lmY θ ϕ

xy z

xy yz 23 1z − zx 2 2x y−

l

m

Exact image Order 0 
1 term 

RMS error = 25 % 

CG for Game Development - J. Křivánek 
2016 



9-parameter approximation 

-1 -2 0 1 2 

0 

1 

2 

 

( , )lmY θ ϕ

xy z

xy yz 23 1z − zx 2 2x y−

l

m

Exact image Order 1 
4 terms 

RMS Error = 8% 

CG for Game Development - J. Křivánek 
2016 



9-parameter approximation 

-1 -2 0 1 2 

0 

1 

2 

 

( , )lmY θ ϕ

xy z

xy yz 23 1z − zx 2 2x y−

l

m

Exact image Order 2 
9 terms 

RMS Error = 1% 

For any illumination, average  
error < 3% [Basri Jacobs 01] 

CG for Game Development - J. Křivánek 
2016 



Real-Time Rendering 

 
 Can be encoded in a 4x4 matrix and evaluated as above 
 Simple procedural rendering method (no textures) 

 Requires only matrix-vector multiply and dot-product 
 In software or NVIDIA vertex programming hardware 

 Widely used in Games (AMPED for Microsoft Xbox), 
Movies (Pixar, Framestore CFC, …)   

( ) tE n n Mn=

surface float1 irradmat (matrix4 M, float3 v) {
            float4 n = {v , 1} ;
            return dot(n , M*n) ;
} CG for Game Development - J. Křivánek 

2016 



Algorithm 

 Preprocess (whenever the EM changes) 
 Project the EM onto 9 SH bases functions 
 Calculate the matrix M from previous slide 
 Upload to the GPU 

 
 During rendering in fragment shader 

 Fetch surface normal and the matrix M 
 Exec the code from previous slide to get the diffuse 

irradiance 
 Multiply by diffuse texture to get final diffuse color due to 

the EM 
 

CG for Game Development - J. Křivánek 
2016 



SH-based irradiance environment 
maps 

 

Images courtesy Ravi Ramamoorthi & Pat Hanrahan 
CG for Game Development - J. Křivánek 

2016 



 Video – Ramamoorthi & Hanrahan 2001 
 http://graphics.stanford.edu/videos/envmap/ 
 

 Further information 
 http://http.developer.nvidia.com/GPUGems2/gpugems2_

chapter10.html 
 

CG for Game Development - J. Křivánek 
2016 

http://graphics.stanford.edu/videos/envmap/
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html


Spherical harmonics-based 
arbitrary BRDF shading 

CG for Game Development - J. Křivánek 
2016 



SH-based shading of arbitrary BRDFs 

 Motivation 
 

 Irradiance EM’s could only handle diffuse surfaces 
 

 Can we use SH for shading surfaces with arbitrary (even 
anisotropic) BRDFs 
 Yes 

 

CG for Game Development - J. Křivánek 
2016 



SH-based shading of arbitrary BRDFs 

 [Kautz et al. 2003] 
 Arbitrary, dynamic env. map 
 Arbitrary BRDF 
 No shadows 

 
 SH representation 

 Environment map (one set of coefficients) 
 Scene BRDFs (one coefficient vector for each discretized 

viewing direction)  



 Rendering: for each vertex / pixel, do 

SH-based shading of arbitrary BRDFs 

Environment map BRDF 

= coeff. dot product 
∫ ( ) 

)()( oiioo fL ωλω ∑=

∫ ⋅→⋅⋅=
)(

iioiiemiemor dcos),(),(),(),(
x

xxxx
H

rfVLL ωθωωωωω



SH-based shading of arbitrary BRDFs 

 BRDF Representation 
 

 BRDF coefficient vector [fi ]i 
for a given ωo, looked up 
from a texture (use e.g. 
paraboloid mapping to map 
ωo to a texture coordinate) 
 

 BRDF coefficients pre-
computed for all scene 
BRDFs (SH projection) 

 
CG for Game Development - J. Křivánek 

2016 



SH-based shading of arbitrary BRDFs 

 BRDF is in local frame 
 Environment map in global frame 
 Need coordinate frame alignment -> SH rotation 

 
 SH closed under rotation 

 Rotation matrix 
 Fastest known procedure is 

the zxzxz-decomposition 
[Kautz et al. 2003] 

 

CG for Game Development - J. Křivánek 
2016 



Algorithm 

 Preprocess 
 For each BRDF in the scene 

 For each viewing direction 
 Project the BRDF lobe onto SH basis (49-100 coefficients) 

 Whenever the EM changes 
 Project the EN onto SH basis (as many coefficients as for the 

“sharpest”, i.e. most specular BRDF) 
 

 Rendering in fragment shader 
 Fetch SH coefficients for the EM 
 Fetch SH coefficients for the BRDF (current viewing direction) 
 Bring the BRDF representation to the global frame using SH 

rotation 
 Calculate the dot product of coefficients = final pixel color 

CG for Game Development - J. Křivánek 
2016 



SH-based shading of arbitrary BRDFs 

 



Filtered importance sampling 

CG for Game Development - J. Křivánek 
2016 



Filtered importance sampling 

 Arbitrary BRDF shading 
 no SH needed 
 BRDFs can be dynamic (used for material design) 

 References 
 Colbert and Křivánek 2006 

 http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html 

 Practical implementation 
 Křivánek and Colbert 2008, EGSR 

 Theory 

 Video 
 https://www.youtube.com/watch?v=_-WTOGg3M0A 

 
 

CG for Game Development - J. Křivánek 
2016 

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
https://www.youtube.com/watch?v=_-WTOGg3M0A


CG for Game Development - J. Křivánek 2016 

Filtered importance sampling 

 Monte Carlo BRDF 
importance sampling 
 leaves noise 



Filtered importance sampling 

 

Deterministic 
sampling 

Monte Carlo 
sampling 

Filtered  
importance sampling 

CG for Game Development - J. Křivánek 
2016 



Filtered importance sampling 

 Filter width depends on probability of sampling a given 
direction 
 Narrow filter in the main BRDF lobe 
 Wide filter outside the lobe 

 MIP maps used for filtering 

CG for Game Development - J. Křivánek 
2016 



Filtered importance sampling 

 Dual paraboloid mapping used to represent envmaps 
 Fast to look up, fairly low distortion 

1.direction
.direction.texcoord
+

=
z
xyst



Filtered importance sampling – 
Algorithm 

 Preprocess 
 Convert EM into dual paraboloid map 
 Create MIP map for the two halves of the EM 
 Pregenerate a low-discrepancy set of “random” tuples to be used 

for BRDF sampling  
 

 Rendering in fragment shader 
 for i = 1 to N 

 Generate a direction with BRDF importance sampling using 
pregenerated random tuple[i] 

 Calculate the probability density (pdf) for that direction 
 Based on the BRDF, determine the MIP map level 
 Look-up the EM, add to the average over all samples 
 

CG for Game Development - J. Křivánek 
2016 



Filtered importance sampling 
 Used in substance painter 

 Check out video: https://www.youtube.com/watch?v=-fpW9C5il_U 

CG for Game Development - J. Křivánek 
2016 

https://www.youtube.com/watch?v=-fpW9C5il_U


Environment mapping summary 

 Very popular for interactive rendering 
 

 Extensions handle complex materials 
 

 Limited to distant lighting assumption 

CG for Game Development - J. Křivánek 
2016 


	Environment map lighting�a.k.a. Image-based lighting�a.k.a. Reflection mapping
	Acknowledgement
	Goal
	Environment mapping (a.k.a. image-based lighting, reflection mapping)
	Assumptions
	Image-based lighting
	Point Light Source
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Mapping
	Mapping
	Mapping
	Rendering with environment maps
	Shading due to an environment map
	Offline rendering – Monte Carlo sampling
	Real-time rendering
	Environment map pre-filtering
	Environment map pre-filtering
	Environment map pre-filtering
	Environment map pre-filtering
	Spherical harmonics-based irradiance environment maps
	Spherical harmonics-based irradiance environment maps
	Analytic irradiance formula in SH basis
	9-parameter approximation
	9-parameter approximation
	9-parameter approximation
	Real-Time Rendering
	Algorithm
	SH-based irradiance environment maps
	Slide Number 33
	Spherical harmonics-based arbitrary BRDF shading
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	Algorithm
	SH-based shading of arbitrary BRDFs
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling – Algorithm
	Filtered importance sampling
	Environment mapping summary

